高数

有些格式懒得调了,凑合着看吧

等价无穷小

sinxx,tanxx,arcsinxx,arctanxx,ex1x,ln(1+x)x,ax1=exlna1xlna(a>0a1),1cosx12x2,(1+x)a1ax(a0),\begin{array}{c}\sin x\sim x,\tan x\sim x,\arcsin x\sim x,\arctan x\sim x,\\ \text{e}^x-1\sim x,\ln(1+x)\sim x,a^x-1=\operatorname{e}^{xln a}-1\sim x\ln a(a>0\operatorname{且}a\neq1),\\ 1-\cos x\sim\dfrac{1}{2}x^2,(1+x)^a-1\sim ax(a\neq0),\end{array}

泰勒公式

ex=1+x+x22!++xnn!+=n=0xnn!sinx=x13!x3++(1)n1(2n+1)!x2n+1+=n=0(1)nx2n+1(2n+1)!,cosx=112!x2++(1)n1(2n)!x2n+=n=0(1)nx2n(2n)!ln(1+x)=x12x2++(1)n1xnn+=n=1(1)n1xnn,1<x111x=1+x+x2++xn+=n=0xn,x<111+x=1x+x2+(1)nxn+=n=0(1)nxn,x<1(1+x)a=1+αx+α(α1)2x2+o(x2)(x0,α0)tanx=x+13x3+o(x3)(x0)arcsinx=x+16x3+o(x3)(x0)arctanx=x13x3+o(x3)(x0)\begin{array}{l} \mathrm{e}^{x}=1+x+\frac{x^{2}}{2 !}+\cdots+\frac{x^{n}}{n !}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n !} \\ \sin x=x-\frac{1}{3 !} x^{3}+\cdots+(-1)^{n} \frac{1}{(2 n+1) !} x^{2 n+1}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}, \\ \cos x=1-\frac{1}{2 !} x^{2}+\cdots+(-1)^{n} \frac{1}{(2 n) !} x^{2 n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !} \\ \ln (1+x)=x-\frac{1}{2} x^{2}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n},-1<x \leqslant 1 \\ \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n},|x|<1 \\ \frac{1}{1+x}=1-x+x^{2}-\cdots+(-1)^{n} x^{n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n},|x|<1 \\ (1+x)^{a}=1+\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}+o\left(x^{2}\right)(x \rightarrow 0, \alpha \neq 0) \\ \tan x=x+\frac{1}{3} x^{3}+o\left(x^{3}\right)(x \rightarrow 0) \\ \arcsin x=x+\frac{1}{6} x^{3}+o\left(x^{3}\right)(x \rightarrow 0) \\ \arctan x=x-\frac{1}{3} x^{3}+o\left(x^{3}\right)(x \rightarrow 0) \end{array}

导数定义

f(x0)=limΔx0f(x0+Δx)f(x0)Δx;f+(x0)=limΔx0+f(x0+Δx)f(x0)Δx.f(x0) 存在 f(x0)=f+(x0).f(n)(x0)=limxx0f(n1)(x)f(n1)(x0)xx0.左导数 f_{-}^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0^{-}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} ; \\ 右导数 f_{+}^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0^{+}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} . \\ f^{\prime}\left(x_{0}\right) \text { 存在 } \Leftrightarrow f_{-}^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right) . \\ 高阶导数 \quad f^{(n)}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f^{(n-1)}(x)-f^{(n-1)}\left(x_{0}\right)}{x-x_{0}} .

基本求导公式

(1)(xk)=kxk1(k).(2)(lnx)=1x(x>0).(3)(ex)=ex;(ax)=axlna,a>0,a1.(4)(sinx)=cosx;(cosx)=sinx;(tanx)=sec2x;(cotx)=csc2x(secx)=secxtanx;(cscx)=cscxcotx;(lncosx)=tanx;(lnsinx)=cotx;(lnsecx+tanx)=secx;(lncscxcotx)=cscx.(5)(arctanx)=11+x2;(arccotx)=11+x2.(6)(arcsinx)=11x2;(arccosx)=11x2.(7)[ln(x+x2+a2)]=1x2+a2,a=1;[ln(x+x2a2)]=1x2a2(x>a>0),a=1.(1) \left(x^{k}\right)^{\prime}=k x^{k-1} ( k 为任意实数).\\ (2) (\ln x)^{\prime}=\frac{1}{x}(x>0) .\\ (3) \left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x} ;\left(a^{x}\right)^{\prime}=a^{x} \ln a, a>0, a \neq 1 .\\ (4) (\sin x)^{\prime}=\cos x ;(\cos x)^{\prime}=-\sin x ;\\ (\tan x)^{\prime}=\sec ^{2} x ;(\cot x)^{\prime}=-\csc ^{2} x \\ (\sec x)^{\prime}=\sec x \tan x ;(\csc x)^{\prime}=-\csc x \cot x ; \\ (\ln |\cos x|)^{\prime}=-\tan x ;(\ln |\sin x|)^{\prime}=\cot x ; \\ (\ln |\sec x+\tan x|)^{\prime}=\sec x ;(\ln |\csc x-\cot x|)^{\prime}=\csc x .\\ (5) (\arctan x)^{\prime}=\frac{1}{1+x^{2}} ;(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} .\\ (6) (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} ;(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} .\\ (7) \left[\ln \left(x+\sqrt{x^{2}+a^{2}}\right)\right]^{\prime}=\frac{1}{\sqrt{x^{2}+a^{2}}} , 常见 a=1 ;\\ \left[\ln \left(x+\sqrt{x^{2}-a^{2}}\right)\right]^{\prime}=\frac{1}{\sqrt{x^{2}-a^{2}}}(x>a>0) , 常见 a=1 .

莱布尼兹公式

u=u(x),v=v(x)n,(u±v)(n)=u(n)±v(n),(uv)(n)=u(n)v+Cn1u(n1)v+Cn2u(n2)v++Cnku(nk)v(k)++Cnn1uv(n1)+uv(n)=k=0nCnku(nk)v(k).设 u=u(x), v=v(x) 均 n 阶可导, 则 (u \pm v)^{(n)}=u^{(n)} \pm v^{(n)} ,\\ \begin{aligned} (u v)^{(n)} &=u^{(n)} v+\mathrm{C}_{n}^{1} u^{(n-1)} v^{\prime}+\mathrm{C}_{n}^{2} u^{(n-2)} v^{\prime \prime}+\cdots+\mathrm{C}_{n}^{k} u^{(n-k)} v^{(k)}+\cdots+\mathrm{C}_{n}^{n-1} u^{\prime} v^{(n-1)}+u v^{(n)} \\ &=\sum_{k=0}^{n} \mathrm{C}_{n}^{k} u^{(n-k)} v^{(k)} . \end{aligned}

麦克劳林公式

y=f(x)=n=0f(n)(x0)n!(xx0)n,y=f(x)=n=0f(n)(0)n!xn.任何一个无穷阶可导的函数都可写成 y=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n} ,\\ 或者 y=f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n !} x^{n} .

渐近线

(1)线.limxx0+f(x)=(limxx0f(x)=),x=x0线.(2)线.limx+f(x)=y1,y=y1线;limxf(x)=y2,y=y2线;limx+f(x)=limxf(x)=y0,y=y0线.(3)线.limx+f(x)x=k1,limx+[f(x)k1x]=b1,y=k1x+b1线y=f(x)线;limxf(x)x=k2,limx[f(x)k2x]=b2,y=k2x+b2线y=f(x)线;limx+f(x)x=limxf(x)x=k,limx+[f(x)kx]=limx[f(x)kx]=b,y=kx+b线y=f(x)线.(1) 铅垂渐近线.\\ 若 \lim _{x \rightarrow x_{0}^{+}} f(x)=\infty\left(\right. 或 \left.\lim _{x \rightarrow x_{0}^{-}} f(x)=\infty\right) , 则 x=x_{0} 为一条铅垂渐近线.\\ (2) 水平渐近线.\\ 若 \lim _{x \rightarrow+\infty} f(x)=y_{1} , 则 y=y_{1} 为一条水平渐近线; 若 \lim _{x \rightarrow-\infty} f(x)=y_{2} , 则 y=y_{2} 为一条水平渐 近线;\\ 若 \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=y_{0} , 则 y=y_{0} 为一条水平渐近线.\\ (3) 斜渐近线.\\ 若 \lim _{x \rightarrow+\infty} \frac{f(x)}{x}=k_{1}, \lim _{x \rightarrow+\infty}\left[f(x)-k_{1} x\right]=b_{1} ,则 y=k_{1} x+b_{1} 是曲线 y=f(x) 的一条斜渐 近线;\\ 若 \lim _{x \rightarrow-\infty} \frac{f(x)}{x}=k_{2}, \lim _{x \rightarrow-\infty}\left[f(x)-k_{2} x\right]=b_{2} , 则 y=k_{2} x+b_{2} 是曲线 y=f(x) 的一条斜渐 近线;\\ 若 \lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=k, \lim _{x \rightarrow+\infty}[f(x)-k x]=\lim _{x \rightarrow-\infty}[f(x)-k x]=b , 则 y=k x+b 是 曲线 y=f(x) 的一条斜渐近线.

曲率

 曲率 k=y[1+(y)2]32, 曲率半径 R=1k\text { 曲率 } k=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^{2}\right]^{\frac{3}{2}}} \text {, 曲率半径 } R=\frac{1}{k} \text {. }

基本积分公式

(1)xk dx=1k+1xk+1+C,k1;{1x2 dx=1x+C,1x dx=2x+C.(2)1x dx=lnx+C.(3)ex dx=ex+C;ax dx=axlna+C,a>0a1.(4)sinx dx=cosx+C;cosx dx=sinx+C;tanx dx=lncosx+C;cotx dx=lnsinx+C;dxcosx=secx dx=lnsecx+tanx+C;dxsinx=cscx dx=lncscxcotx+C;sec2x dx=tanx+C;csc2x dx=cotx+C;secxtanx dx=secx+C;cscxcotx dx=cscx+C. (5) {11+x2 dx=arctanx+C,1a2+x2 dx=1aarctanxa+C(a>0). (6) {11x2 dx=arcsinx+C,1a2x2 dx=arcsinxa+C(a>0). (7) {1x2+a2 dx=ln(x+x2+a2)+C( 常见 a=1),1x2a2 dx=lnx+x2a2+C(x>a).(8)1x2a2 dx=12alnxax+a+C(1a2x2 dx=12alnx+axa+C).(9)a2x2 dx=a22arcsinxa+x2a2x2+C(a>x0).(10)sin2x dx=x2sin2x4+C(sin2x=1cos2x2);cos2x dx=x2+sin2x4+C(cos2x=1+cos2x2);tan2x dx=tanxx+C(tan2x=sec2x1);cot2x dx=cotxx+C(cot2x=csc2x1).(1) \int x^{k} \mathrm{~d} x=\frac{1}{k+1} x^{k+1}+C, k \neq-1 ;\left\{\begin{array}{l}\int \frac{1}{x^{2}} \mathrm{~d} x=-\frac{1}{x}+C, \\ \int \frac{1}{\sqrt{x}} \mathrm{~d} x=2 \sqrt{x}+C .\end{array}\right.\\ (2) \int \frac{1}{x} \mathrm{~d} x=\ln |x|+C .\\ (3) \int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+C ; \int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+C, a>0 且 a \neq 1 .\\ (4) \int \sin x \mathrm{~d} x=-\cos x+C ; \int \cos x \mathrm{~d} x=\sin x+C ;\\ \int \tan x \mathrm{~d} x=-\ln |\cos x|+C ; \int \cot x \mathrm{~d} x=\ln |\sin x|+C ; \\ \int \frac{\mathrm{d} x}{\cos x}=\int \sec x \mathrm{~d} x=\ln |\sec x+\tan x|+C ; \\ \int \frac{\mathrm{d} x}{\sin x}=\int \csc x \mathrm{~d} x=\ln |\csc x-\cot x|+C ; \\ \int \sec ^{2} x \mathrm{~d} x=\tan x+C ; \int \csc ^{2} x \mathrm{~d} x=-\cot x+C ; \\ \int \sec x \tan x \mathrm{~d} x=\sec x+C ; \int \csc x \cot x \mathrm{~d} x=-\csc x+C .\\ \begin{array}{l} \text { (5) }\left\{\begin{array}{l} \int \frac{1}{1+x^{2}} \mathrm{~d} x=\arctan x+C, \\ \int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \frac{x}{a}+C(a>0) . \end{array}\right.\\ \text { (6) }\left\{\begin{array}{l} \int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\arcsin x+C, \\ \int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\arcsin \frac{x}{a}+C(a>0) . \end{array}\right.\\ \text { (7) }\left\{\begin{array}{l} \int \frac{1}{\sqrt{x^{2}+a^{2}}} \mathrm{~d} x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C(\text { 常见 } a=1), \\ \int \frac{1}{\sqrt{x^{2}-a^{2}}} \mathrm{~d} x=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|+C(|x|>|a|) . \end{array}\right. \end{array}\\ (8) \int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C\left(\int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left|\frac{x+a}{x-a}\right|+C\right) .\\ (9) \int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{a^{2}}{2} \arcsin \frac{x}{a}+\frac{x}{2} \sqrt{a^{2}-x^{2}}+C(a>|x| \geqslant 0) .\\ (10) \int \sin ^{2} x \mathrm{~d} x=\frac{x}{2}-\frac{\sin 2 x}{4}+C\left(\sin ^{2} x=\frac{1-\cos 2 x}{2}\right) ;\\ \int \cos ^{2} x \mathrm{~d} x=\frac{x}{2}+\frac{\sin 2 x}{4}+C\left(\cos ^{2} x=\frac{1+\cos 2 x}{2}\right) ;\\ \int \tan ^{2} x \mathrm{~d} x=\tan x-x+C\left(\tan ^{2} x=\sec ^{2} x-1\right) ; \\ \int \cot ^{2} x \mathrm{~d} x=-\cot x-x+C\left(\cot ^{2} x=\csc ^{2} x-1\right) .\\

区间再现

abf(x)dx=abf(a+bx)dx.abf(x)dx=12ab[f(x)+f(a+bx)]dx.aaf(x)dx=0a[f(x)+f(x)]dx(a>0).\begin{array}{c} \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} f(a+b-x) \mathrm{d} x . \\ \int_{a}^{b} f(x) \mathrm{d} x=\frac{1}{2} \int_{a}^{b}[f(x)+f(a+b-x)] \mathrm{d} x .\\ \int_{-a}^{a} f(x) \mathrm{d} x=\int_{0}^{a}[f(x)+f(-x)] \mathrm{d} x(a>0) . \end{array}

点火公式

0π2sinnx dx=0π2cosnx dx={n1n,n3n2,231,n 为大于 1 的奇数, n1nn3n212π2,n 为正偶数. 0πsinnx dx={2n1nn3n2231,n 为大于 1 的奇数, 2n1nn3n212π2,n 为正偶数. 0πcosnx dx={0,n 为正奇数, 2n1nn3n212π2,n 为正偶数. 02πsinnx dx={0,n 为正奇数, 4n1nn3n212π2,n 为正偶数. 02πcosnx dx=02πsinnx dx={0,n 为正奇数, 4n1nn3n212π2,n 为正偶数. 0πxf(sinx)dx=π20πf(sinx)dx0πxf(sinx)dx=π0π2f(sinx)dx.0π2f(sinx)dx=0π2f(cosx)dx.0π2f(sinx,cosx)dx=0π2f(cosx,sinx)dx.\begin{array}{l} \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x\\ =\left\{\begin{array}{ll} \frac{n-1}{n}, \frac{n-3}{n-2}, \cdots \cdot \frac{2}{3} \cdot 1, & n \text { 为大于 } 1 \text { 的奇数, } \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \text { 为正偶数. } \end{array}\right.\\ \int_{0}^{\pi} \sin ^{n} x \mathrm{~d} x=\left\{\begin{array}{ll} 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdots \cdot \frac{2}{3} \cdot 1, & n \text { 为大于 } 1 \text { 的奇数, } \\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \text { 为正偶数. } \end{array}\right.\\ \int_{0}^{\pi} \cos ^{n} x \mathrm{~d} x=\left\{\begin{array}{ll} 0, & n \text { 为正奇数, } \\ 2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \text { 为正偶数. } \end{array}\right.\\ \int_{0}^{2 \pi} \sin ^{n} x \mathrm{~d} x=\left\{\begin{array}{ll} 0, & n \text { 为正奇数, } \\ 4 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \text { 为正偶数. } \end{array}\right.\\ \int_{0}^{2 \pi} \cos ^{n} x \mathrm{~d} x=\int_{0}^{2 \pi} \sin ^{n} x \mathrm{~d} x=\left\{\begin{array}{ll} 0, & n \text { 为正奇数, } \\ 4 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \text { 为正偶数. } \end{array}\right.\\ \int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \mathrm{d} x \text {. }\\ \int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x .\\ \int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x=\int_{0}^{\frac{\pi}{2}} f(\cos x) \mathrm{d} x .\\ \int_{0}^{\frac{\pi}{2}} f(\sin x, \cos x) \mathrm{d} x=\int_{0}^{\frac{\pi}{2}} f(\cos x, \sin x) \mathrm{d} x . \end{array}

诱导公式

(1)sin(π±t)=sint.(2)cos(π±t)=cost.(3)sin(π2±t)=cost.(4)cos(π2±t)=sint.(1) \sin (\pi \pm t)=\mp \sin t .\\ (2) \cos (\pi \pm t)=-\cos t .\\ (3) \sin \left(\frac{\pi}{2} \pm t\right)=\cos t .\\ (4) \cos \left(\frac{\pi}{2} \pm t\right)=\mp \sin t .

全微分

dz=zx dx+zy dy\mathrm{d} z=\frac{\partial z}{\partial x} \mathrm{~d} x+\frac{\partial z}{\partial y} \mathrm{~d} y

无条件极值

(1)().z=f(x,y)(x0,y0){ 一阶偏导数存在,  取极值, fx(x0,y0)=0,fy(x0,y0)=0..(2).{fxx(x0,y0)=A,fxy(x0,y0)=B, 则 Δ=ACB2fyy(x0,y0)=C,{>0 极值 {A<0 极大值, A>0 极小值, <0 非极值, =0 方法失效, 另谋他法. .无条件极值\\ (1)二元函数取极值的必要条件 (类比一元函数).\\ 设 z=f(x, y) 在点 \left(x_{0}, y_{0}\right)\left\{\begin{array}{l}\text { 一阶偏导数存在, } \\ \text { 取极值, } f_{x}^{\prime}\left(x_{0}, y_{0}\right)=0, f_{y}^{\prime}\left(x_{0}, y_{0}\right)=0 .\end{array}\right. \\ 【注】该必要条件同样适用于三元及三元以上函数.\\ (2) 二元函数取极值的充分条件.\\ 记 \left\{\begin{array}{l}f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right)=A, \\ f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right)=B, \text { 则 } \Delta=A C-B^{2} \\ f_{y y}^{\prime \prime}\left(x_{0}, y_{0}\right)=C,\end{array}\left\{\begin{array}{l}>0 \Rightarrow \text { 极值 }\left\{\begin{array}{l}A<0 \Rightarrow \text { 极大值, } \\ A>0 \Rightarrow \text { 极小值, }\end{array}\right. \\ <0 \Rightarrow \text { 非极值, } \\ =0 \Rightarrow \text { 方法失效, 另谋他法. }\end{array}\right.\right.\\ 【注】该充分条件不适用于三元及三元以上函数.

条件极值和拉格朗日乘数

u=f(x,y,z){φ(x,y,z)=0,ψ(x,y,z)=0,(1)F(x,y,z,λ,μ)=f(x,y,z)+λφ(x,y,z)+μψ(x,y,z);(2){Fx=fx+λφx+μψx=0,Fy=fy+λφy+μψy=0,Fz=fz+λφz+μψz=0,Fλ=φ(x,y,z)=0,Fμ=ψ(x,y,z)=0;(3)Pi,i=1,2,3,,n,f(Pi),umax,umin;(4),,.条件极值与拉格朗日乘数法\\ 求目标函数 u=f(x, y, z) 在条件 \left\{\begin{array}{l}\varphi(x, y, z)=0, \\ \psi(x, y, z)=0\end{array}\right. 下的最值, 则\\ (1) 构造辅助函数 F(x, y, z, \lambda, \mu)=f(x, y, z)+\lambda \varphi(x, y, z)+\mu \psi(x, y, z) ;\\ (2) 令\\ \left\{\begin{array}{l} F_{x}^{\prime}=f_{x}^{\prime}+\lambda \varphi_{x}^{\prime}+\mu \psi_{x}^{\prime}=0, \\ F_{y}^{\prime}=f_{y}^{\prime}+\lambda \varphi_{y}^{\prime}+\mu \psi_{y}^{\prime}=0, \\ F_{z}^{\prime}=f_{z}^{\prime}+\lambda \varphi_{z}^{\prime}+\mu \psi_{z}^{\prime}=0, \\ F_{\lambda}^{\prime}=\varphi(x, y, z)=0, \\ F_{\mu}^{\prime}=\psi(x, y, z)=0 ; \end{array}\right.\\ (3) 解上述方程组得备选点 P_{i}, i=1,2,3, \cdots, n , 并求 f\left(P_{i}\right) , 取其最大值为 u_{\max } , 最小值为 u_{\min } ;\\ (4)根据实际问题, 必存在最值, 所得即为所求.

一阶线性微分方程

y+p(x)y=q(x)y=ep(x)dx[ep(x)dxq(x)dx+C].y^{\prime}+p(x) y=q(x)\\ y=\mathrm{e}^{-\int p(x) \mathrm{d} x}\left[\int \mathrm{e}^{\int p(x) \mathrm{d} x} \cdot q(x) \mathrm{d} x+C\right] .

伯努利方程

()y+p(x)y=q(x)yn(n0,1)()a.yny+p(x)y1n=q(x);b.z=y1n,dz dx=(1n)yndy dx,11ndz dx+p(x)z=q(x);c.线.(仅数学一) 能写成 y^{\prime}+p(x) y=q(x) y^{n}(n \neq 0,1) (伯努利方程)\\ a. 先变形为 y^{-n} \cdot y^{\prime}+p(x) y^{1-n}=q(x) ;\\ b. 令 z=y^{1-n} , 得 \frac{\mathrm{d} z}{\mathrm{~d} x}=(1-n) y^{-n} \frac{\mathrm{d} y}{\mathrm{~d} x} , 则 \frac{1}{1-n} \frac{\mathrm{d} z}{\mathrm{~d} x}+p(x) z=q(x) ;\\ c. 解此一阶线性微分方程即可.

欧拉方程

x2y+pxy+qy=f(x)()(1)x>0,x=et,t=lnx,dt dx=1x,dy dx=dy dtdt dx=1xdy dt,d2y dx2=ddx(1xdy dt)=1x2dy dt+1xddx(dy dt)=1x2dy dt+1x2d2y dt2,d2y dt2+(p1)dy dt+qy=f(et),(t=lnxx).(2)x<0,x=et,.能写成 x^{2} y^{\prime \prime}+p x y^{\prime}+q y=f(x) (仅数学一)\\ (1) 当 x>0 时, 令 x=\mathrm{e}^{t} , 则 t=\ln x, \frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{x} , 于是\\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{x} \frac{\mathrm{d} y}{\mathrm{~d} t}, \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{x} \frac{\mathrm{d} y}{\mathrm{~d} t}\right)=-\frac{1}{x^{2}} \frac{\mathrm{d} y}{\mathrm{~d} t}+\frac{1}{x} \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)=-\frac{1}{x^{2}} \frac{\mathrm{d} y}{\mathrm{~d} t}+\frac{1}{x^{2}} \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}},\\ 方程化为 \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+(p-1) \frac{\mathrm{d} y}{\mathrm{~d} t}+q y=f\left(\mathrm{e}^{t}\right) ,\\ 即可求解(别忘了用 t=\ln x 回代成 x 的函数).\\ (2) 当 x<0 时, 令 x=-\mathrm{e}^{t} , 同理可得.

解的结构

y+p1y+p2y+p3y=0,λ3+p1λ2+p2λ+p3=0λ1,2,3.(1)λ, Ceλx;(2)λk,(C1+C2x+C3x2++Ckxk1)eλx;(3)λα±β1,eαx(C1cosβx+C2sinβx).如 y^{\prime \prime \prime}+p_{1} y^{\prime \prime}+p_{2} y^{\prime}+p_{3} y=0 , 写 \lambda^{3}+p_{1} \lambda^{2}+p_{2} \lambda+p_{3}=0 \Rightarrow \lambda_{1,2,3} .\\ (1) 若 \lambda 为单实根, 写 \ C \mathrm{e}^{\lambda x} ;\\ (2) 若 \lambda 为 k 重实根,写\\ \left(C_{1}+C_{2} x+C_{3} x^{2}+\cdots+C_{k} x^{k-1}\right) \mathrm{e}^{\lambda x} ; \\ (3) 若 \lambda 为单复根 \alpha \pm \beta_{1} , 写 \\ \mathrm{e}^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right) .

非齐次线性微分方程的特解

 (1) 当自由项 f(x)=Pn(x)eαx 时, 特解要设为 y=eαxQn(x)xk{eαx 照抄, Qn(x) 为 x 的 n 次一般多项式, k={0,αλ1,αλ2,1,α=λ1 或 α=λ2,2,α=λ1=λ2.(2)f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx],y=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk,{eαx 照抄, l=max{m,n},Ql(1)(x),Ql(2)(x) 分别为 x 的两个不同的 l 次一般多项式, k={0,α±βi 不是特征根, 1,α±βi 是特征根. \text { (1) 当自由项 } f(x)=P_{n}(x) \mathrm{e}^{\alpha x} \text { 时, 特解要设为 } y^{*}=\mathrm{e}^{\alpha x} Q_{n}(x) x^{k} \text {, }\\ \left\{\begin{array}{l} \mathrm{e}^{\alpha x} \text { 照抄, } \\ Q_{n}(x) \text { 为 } x \text { 的 } n \text { 次一般多项式, } \\ k=\left\{\begin{array}{ll} 0, & \alpha \neq \lambda_{1}, \alpha \neq \lambda_{2}, \\ 1, & \alpha=\lambda_{1} \text { 或 } \alpha=\lambda_{2}, \\ 2, & \alpha=\lambda_{1}=\lambda_{2} . \end{array}\right. \end{array}\right.\\ (2) 当自由项 f(x)=\mathrm{e}^{\alpha x}\left[P_{m}(x) \cos \beta x+P_{n}(x) \sin \beta x\right] 时, 特解要设为\\ y^{*}=\mathrm{e}^{\alpha x}\left[Q_{l}^{(1)}(x) \cos \beta x+Q_{l}^{(2)}(x) \sin \beta x\right] x^{k},\\ 其中 \left\{\begin{array}{l}\mathrm{e}^{\alpha x} \text { 照抄, } \\ l=\max \{m, n\}, Q_{l}^{(1)}(x), Q_{l}^{(2)}(x) \text { 分别为 } x \text { 的两个不同的 } l \text { 次一般多项式, } \\ k=\left\{\begin{array}{ll}0, & \alpha \pm \beta \mathrm{i} \text { 不是特征根, } \\ 1, & \alpha \pm \beta \mathrm{i} \text { 是特征根. }\end{array}\right.\end{array}\right.

无穷级数

(1)ln(1+x)=n=1(1)n1xnn,1<x1.(2)12ln(1+x)=n=1(1)n1xn2n,1<x1.(3)arctanx=n=0(1)nx2n+12n+1,1x1.(4)ex=n=0xnn!,<x<+:(5)ex+ex2=n=0x2n(2n)!,<x<+.(6)cosx=n=0(1)nx2n(2n)!,<x<+.(7)exex2=n=0x2n+1(2n+1)!,<x<+.(8)sinx=n=0(1)nx2n+1(2n+1)!,<x<+.(1) \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{x^{n}}{n},-1<x \leqslant 1 .\\ (2) \frac{1}{2} \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{x^{n}}{2 n},-1<x \leqslant 1 .\\ (3) \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{x^{2 n+1}}{2 n+1},-1 \leqslant x \leqslant 1 .\\ (4) \mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !},-\infty<x<+\infty :\\ (5) \frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n) !},-\infty<x<+\infty .\\ (6) \cos x=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{x^{2 n}}{(2 n) !},-\infty<x<+\infty .\\ (7) \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) !},-\infty<x<+\infty .\\ (8) \sin x=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{x^{2 n+1}}{(2 n+1) !},-\infty<x<+\infty .

p级数/p积分

(1)n=1aqn1{=a1q,q<1, 发散, q1. (2) p 级数 n=11np{ 收敛, p>1 发散, p1.(3)广pn=21n(lnn)p{ 收敛, p>1, 发散, p1.(4)pn=1(1)n11np{ 绝对收敛, p>1, 条件收敛, 0<p1. (5) p 积分 011xpdx{ 收敛, 0<p<1. 发散, p1 (6) p 积分 1+1xpdx{ 收敛, p>1 发散, p1.(1) 等比级数 \sum_{n=1}^{\infty} a q^{n-1}\left\{\begin{array}{ll}=\frac{a}{1-q}, & |q|<1, \\ \text { 发散, } & |q| \geqslant 1 .\end{array}\right. \\ \text { (2) } p \text { 级数 } \sum_{n=1}^{\infty} \frac{1}{n^{p}}\left\{\begin{array}{ll} \text { 收敛, } & p>1 \text {, } \\ \text { 发散, } & p \leqslant 1 . \end{array}\right.\\ (3) 广义 p 级数 \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}\left\{\begin{array}{ll}\text { 收敛, } & p>1, \\ \text { 发散, } & p \leqslant 1 .\end{array}\right. \\ (4) 交错 p 级数 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{p}}\left\{\begin{array}{ll}\text { 绝对收敛, } \quad p>1, \\ \text { 条件收敛, } \quad 0<p \leqslant 1 .\end{array}\right.\\ \text { (5) } p \text { 积分 } \int_{0}^{1} \frac{1}{x^{p}} d x\left\{\begin{array}{ll} \text { 收敛, } & 0<p<1 .\\ \text { 发散, } & p \geqslant 1 \text {, } \end{array}\right.\\ \text { (6) } p \text { 积分 } \int_{1}^{+\infty} \frac{1}{x^{p}} d x\left\{\begin{array}{ll} \text { 收敛, } & p>1 \text {, } \\ \text { 发散, } & p \leqslant 1 . \end{array}\right.\\

傅里叶

S(x)={f(x),x 为连续点, f(x0)+f(x+0)2,x 为间断点, f(l+0)+f(l0)2,x=±l.f(x)a02+n=1(ancosnπxl+bnsinnπxl),a0=1lllf(x)dx,an=1lllf(x)cosnπxl dx,n=1,2,bn=1lllf(x)sinnπxl dx,S(x)=\left\{\begin{array}{ll} f(x), & x \text { 为连续点, } \\ \frac{f(x-0)+f(x+0)}{2}, & x \text { 为间断点, } \\ \frac{f(-l+0)+f(l-0)}{2}, & x=\pm l . \end{array}\right.\\ \\ \begin{array}{l} f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right), \\ a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) \mathrm{d} x, \\ a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{~d} x, n=1,2, \cdots \\ b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{~d} x, \end{array}

平面方程

n=(A,B,C).(1):Ax+By+Cz+D=0.(2):A(xx0)+B(yy0)+C(zz0)=0.(3):xx1yy1zz1xx2yy2zz2xx3yy3zz3=0(线Pi(xi,yi,zi),i=1,2,3).(4):xa+yb+zc=1((a,0,0),(0,b,0),(0,0,c)).(5).A1,B1,C1A2,B2,C2,{A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0线L,μ(A1x+B1y+C1z+D1)+λ(A2x+B2y+C2z+D2)=0.(μ=1(A2x+B2y+C2z+D2)=0)以下假设平面的法向量 \boldsymbol{n}=(A, B, C) .\\ (1) 一般式: A x+B y+C z+D=0 .\\ (2) 点法式: A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 .\\ (3) 三点式: \left|\begin{array}{lll}x-x_{1} & y-y_{1} & z-z_{1} \\ x-x_{2} & y-y_{2} & z-z_{2} \\ x-x_{3} & y-y_{3} & z-z_{3}\end{array}\right|=0\left(\right. 平面过不共线的三点 P_{i}\left(x_{i}, y_{i}, z_{i}\right), i=1,2,3 ).\\ (4) 截距式: \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 (平面过 (a, 0,0),(0, b, 0),(0,0, c) 三点).\\ (5) 平面束方程.\\ 设 A_{1}, B_{1}, C_{1} 与 A_{2}, B_{2}, C_{2} 不成比例,则 \left\{\begin{array}{l}A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \\ A_{2} x+B_{2} y+C_{2} z+D_{2}=0\end{array}\right. \\ 表示两个不平行平面的交线 L , 则方程\\ \mu\left(A_{1} x+B_{1} y+C_{1} z+D_{1}\right)+\lambda\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right)=0 \\ 叫作平面束方程.(\mu=1则不包含\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right)=0)

直线方程

线τ=(l,m,n).(1):{A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0,n1=(A1,B1,C1),n2=(A2,B2,C2),n1n2,线,线τ=n1×n2.(2)():xx0l=yy0m=zz0n.(3):{x=x0+lt,y=y0+mt,M(x0,y0,z0) 为直线上的已知点, t 为参数. z=z0+nt,(4):xx1x2x1=yy1y2y1=zz1z2z1(线Pi(xi,yi,zi),i=1,2).以下假设直线的方向向量 \tau=(l, m, n) .\\ (1)一般式: \left\{\begin{array}{l}A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \\ A_{2} x+B_{2} y+C_{2} z+D_{2}=0,\end{array} \boldsymbol{n}_{1}=\left(A_{1}, B_{1}, C_{1}\right), \boldsymbol{n}_{2}=\left(A_{2}, B_{2}, C_{2}\right)\right. , 其中 \boldsymbol{n}_{1} \nparallel \boldsymbol{n}_{2} \\ 【注】其几何背景很直观, 是两个平面的交线, 且该直线的方向向量 \tau=\boldsymbol{n}_{1} \times \boldsymbol{n}_{2} .\\ (2) 点向式(标准式、对称式) : \frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n} .\\ (3) 参数式: \left\{\begin{array}{l}x=x_{0}+l t, \\ y=y_{0}+m t, M\left(x_{0}, y_{0}, z_{0}\right) \text { 为直线上的已知点, } t \text { 为参数. } \\ z=z_{0}+n t,\end{array}\right. \\ (4) 两点式: \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} (直线过不同的两点 P_{i}\left(x_{i}, y_{i}, z_{i}\right), i=1,2 ).

点到平面的距离

P0(x0,y0,z0)Ax+By+Cz+D=0d=Ax0+By0+Cz0+DA2+B2+C2.点 P_{0}\left(x_{0}, y_{0}, z_{0}\right) 到平面 A x+B y+C z+D=0 的距离 d=\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} .

梯度 散度 旋度 (修复中)

\left.grad u\right|_{P_{0}}=\left(u_{x}^{\prime}\left(P_{0}\right), u_{y}^{\prime}\left(P_{0}\right), u_{z}^{\prime}\left(P_{0}\right)\right) \\ \\ div \boldsymbol{A}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\ \\ rot \boldsymbol{A}=\left|\begin{array}{ccc} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|\

极坐标 球坐标

{x=rcosθy=rsinθΩf(x,y,z)dx dy dz=Ωf(rcosθ,rsinθ,z)r dr dθdz.{x=rsinφcosθy=rsinφsinθz=rcosφΩf(x,y,z)dx dy dz=Ωf(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdθdφdr.\left\{\begin{array}{l} x=r \cos \theta \\ y=r \sin \theta \end{array}\right.\\ \iiint_{\Omega} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{\Omega} f(r \cos \theta, r \sin \theta, z) r \mathrm{~d} r \mathrm{~d} \theta \mathrm{d} z .\\ \\ \left\{\begin{array}{l} x=r \sin \varphi \cos \theta \\ y=r \sin \varphi \sin \theta \\ z=r \cos \varphi \end{array}\right.\\ \iiint_{\Omega} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{\Omega} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^{2} \sin \varphi \mathrm{d} \theta \mathrm{d} \varphi \mathrm{d} r .

格林公式 高斯公式

LP(x,y)dx+Q(x,y)dy=D(QxPy)dσΣP dy dz+Q dz dx+R dx dy=Ω(Px+Qy+Rz)dv.\oint_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} \sigma\\ \oiint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iiint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \mathrm{d} v .

杂项

S=π()×a×bsinx2V=1/3(sh)Sn=a11qn1q椭圆面积:S=π(圆周率)×a×b\\ sinx函数一拱面积:2\\ 圆锥体积:V=1/3(s*h)\\ 等比数列求和:S_{n}=a_{1} \frac{1-q^{n}}{1-q}\\

线性代数

行列式初等变换

使k使kk使第一类初等变换(换行换列)使行列式变号,\\ 第二类初等变换(某行或某列乘k倍)使行列式变k倍,\\ 第三类初等变换(某行(列)乘k倍加到另一行(列))使行列式不变。

副对角线行列式

线a11a1,n1a1na21a2,n10an100=00a1n0a2,n1a2nan1an,n1ann=00a1n0a2,n10an100=(1)n(n1)2a1,na2,n1an1.副对角线行列式 \begin{array}{l} \left|\begin{array}{cccc} a_{11} & \cdots & a_{1, n-1} & a_{1 n} \\ a_{21} & \cdots & a_{2, n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n 1} & \cdots & 0 & 0 \end{array}\right|=\left|\begin{array}{cccc} 0 & \cdots & 0 & a_{1 n} \\ 0 & \cdots & a_{2, n-1} & a_{2 n} \\ \vdots & & \vdots & \vdots \\ a_{n 1} & \cdots & a_{n, n-1} & a_{nn} \end{array}\right|=\left|\begin{array}{cccc} 0 & \cdots & 0 & a_{1 n} \\ 0 & \cdots & a_{2, n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n 1} & \cdots & 0 & 0 \end{array}\right| \\ =(-1)^{\frac{n(n-1)}{2}} a_{1, n} a_{2, n-1} \cdots a_{n 1} . \\ \end{array}

拉普拉斯展开

Am,Bn,AOOB=ACOB=AOCB=AB,OABO=CABO=OABC=(1)mnAB.设 \boldsymbol{A} 为 m 阶矩阵, \boldsymbol{B} 为 n 阶矩阵, 则 \begin{array}{c} \left|\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B} \end{array}\right|=\left|\begin{array}{ll} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{array}\right|=\left|\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B} \end{array}\right|=|\boldsymbol{A}||\boldsymbol{B}|, \\ \left|\begin{array}{ll} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{array}\right|=\left|\begin{array}{ll} \boldsymbol{C} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{array}\right|=\left|\begin{array}{ll} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{C} \end{array}\right|=(-1)^{m n}|\boldsymbol{A}||\boldsymbol{B}| . \end{array}

范德蒙德行列式

111x1x2xnx12x22xn2x1n1x2n1xnn1=1i<jn(xjxi).\left|\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{array}\right|=\prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right) .

克拉默法则

 nn线{a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bnD=aijn0xj=DjD(j=1,2,n)DjDb1,b2,,bnn定理 \ 设有由 \mathrm{n} 个方程组成的 \mathrm{n} 元线性方程组\\ \left\{\begin{array}{l} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots \cdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \end{array}\right.\\ 如果方程组的系数行列式 D=\left|a_{i j}\right|_{n} \neq 0 ,则方程组有唯一解 x_{j}=\frac{D_{j}}{D}(j=1,2, \cdots n) ,\\ 其中 D_{j} 是把D中第列换成常数项 b_{1}, b_{2}, \cdots, b_{n} 后所得到的n阶行列式。

方阵乘积的行列式

 设 A,B 是同阶方阵,则 AB=AB\text { 设 } \boldsymbol{A}, \boldsymbol{B} \text { 是同阶方阵,则 }|\boldsymbol{A B}|=|\boldsymbol{A}||\boldsymbol{B}| \text {. }

矩阵转置

 (1) (AT)T=A;(2)(kA)T=kAT;(3)(A+B)T=AT+BT;(4)(AB)T=BTAT;(5)m=n 时, AT=A\text { (1) }\left(\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\boldsymbol{A} \text ; \\ (2) (k \boldsymbol{A})^{\mathrm{T}}=k \boldsymbol{A}^{\mathrm{T}} \text ; \\ (3) (\boldsymbol{A}+\boldsymbol{B})^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}}+\boldsymbol{B}^{\mathrm{T}} \text ;\\ (4) (\boldsymbol{A} \boldsymbol{B})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \text ; \\ (5) 当 m=n \text { 时, }\left|\boldsymbol{A}^{\mathrm{T}}\right|=|\boldsymbol{A}| \text {. }

逆矩阵

1.(1)A,Bn,En,AB=BA=E,A,BA,,A1.(2)AA0.A0,A,A1=1AA.2.A,B,(1)(A1)1=A;(2)k0,(kA)1=1kA1;(3)AB,(AB)1=B1A1;(4)AT,(AT)1=(A1)T;穿,穿,.(5)A1=A1. 【注】 A+B 不一定可逆, 且 (A+B)1A1+B1(6)[AOOB]1=[A1OOB1],[OABO]1=[OB1A1O].1. 逆矩阵的定义\\ (1) 定义 \boldsymbol{A}, \boldsymbol{B} 是 n 阶方阵, \boldsymbol{E} 是 n 阶单位矩阵, 若 \boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{E} ,\\ 则称 \boldsymbol{A} 是可逆矩阵, 并称 \boldsymbol{B} 是 \boldsymbol{A} 的逆 矩阵, 且逆矩阵是唯一的, 记作 \boldsymbol{A}^{-1} .\\ (2) \boldsymbol{A} 可逆的充分必要条件是 |\boldsymbol{A}| \neq 0 . 当 |\boldsymbol{A}| \neq 0 时, \boldsymbol{A} 可逆, 且\\ \boldsymbol{A}^{-1}=\frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^{*} .\\ 2. 逆矩阵的性质与重要公式\\ 设 \boldsymbol{A}, \boldsymbol{B} 是同阶可逆矩阵, 则\\ (1) \left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A} ;\\ (2) 若 k \neq 0 , 则 (k \boldsymbol{A})^{-1}=\frac{1}{k} \boldsymbol{A}^{-1} ;\\ (3) \boldsymbol{A B} 也可逆,且 (\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1} ;\\ (4) \boldsymbol{A}^{\mathrm{T}} 也可逆, 且 \left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}} ;\\ 【注】此处可称为 “穿脱”原则, 即穿衣时先内后外, 脱衣时先外后内.\\ (5) \left|\boldsymbol{A}^{-1}\right|=|\boldsymbol{A}|^{-1} .\\ \text { 【注】 } \boldsymbol{A}+\boldsymbol{B} \text { 不一定可逆, 且 }(\boldsymbol{A}+\boldsymbol{B})^{-1} \neq \boldsymbol{A}^{-1}+\boldsymbol{B}^{-1} \text {. }\\ (6) \left[\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B} \end{array}\right]^{-1}=\left[\begin{array}{cc} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}^{-1} \end{array}\right], \quad\left[\begin{array}{ll} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{array}\right]^{-1}=\left[\begin{array}{cc} \boldsymbol{O} & \boldsymbol{B}^{-1} \\ \boldsymbol{A}^{-1} & \boldsymbol{O} \end{array}\right] .

伴随矩阵

1.An2A,A,A=[A11A21An1A12A22An2A1nA2nAnn],AA=AA=AE.2.(1)nA,A,AA=AA=AE,A=An1.A0,A=AA1,A1=1AA,A=A(A)1;(kA)(kA)=kAE;AT(AT)=ATE;A1(A1)=A1E;A(A)=AE.(2)(AT)=(A)T,(A1)=(A)1,(AB)=BA,(A)=An2A.(A+B)A+B.1. 伴随矩阵的定义\\ 伴随矩阵 将行列式 |\boldsymbol{A}| 的 n^{2} 个元素的代数余子式按如下形式排成的矩阵称为 \boldsymbol{A} 的伴随矩阵, 记作 \boldsymbol{A}^{*} , 即\\ \boldsymbol{A}^{*}=\left[\begin{array}{cccc} A_{11} & A_{21} & \cdots & A_{n 1} \\ A_{12} & A_{22} & \cdots & A_{n 2} \\ \vdots & \vdots & & \vdots \\ A_{1 n} & A_{2 n} & \cdots & A_{nn} \end{array}\right],\\ 且有 \boldsymbol{A A}^{*}=\boldsymbol{A}^{*} \boldsymbol{A}=|\boldsymbol{A}| \boldsymbol{E} .\\ 2. 伴随矩阵的性质与重要公式\\ (1) 对任意 n 阶方阵 \boldsymbol{A} , 都有伴随矩阵 \boldsymbol{A}^{*} , 且有公式\\ \boldsymbol{A A}^{*}=\boldsymbol{A}^{*} \boldsymbol{A}=|\boldsymbol{A}| \boldsymbol{E}, \quad\left|\boldsymbol{A}^{*}\right|=|\boldsymbol{A}|^{n-1} .\\ 当 |\boldsymbol{A}| \neq 0 时, 有\\ \begin{array}{l} \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{A}^{-1}, \quad \boldsymbol{A}^{-1}=\frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^{*}, \quad \boldsymbol{A}=|\boldsymbol{A}|\left(\boldsymbol{A}^{*}\right)^{-1} ; \\ (k \boldsymbol{A})(k \boldsymbol{A})^{*}=|k \boldsymbol{A}| \boldsymbol{E} ; \\ \boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{A}^{\mathrm{T}}\right)^{*}=\left|\boldsymbol{A}^{\mathrm{T}}\right| \boldsymbol{E} ; \\ \boldsymbol{A}^{-1}\left(\boldsymbol{A}^{-1}\right)^{*}=\left|\boldsymbol{A}^{-1}\right| \boldsymbol{E} ; \\ \boldsymbol{A}^{*}\left(\boldsymbol{A}^{*}\right)^{*}=\left|\boldsymbol{A}^{*}\right| \boldsymbol{E} . \end{array}\\ (2) \left(\boldsymbol{A}^{\mathrm{T}}\right)^{*}=\left(\boldsymbol{A}^{*}\right)^{\mathrm{T}},\left(\boldsymbol{A}^{-1}\right)^{*}=\left(\boldsymbol{A}^{*}\right)^{-1},(\boldsymbol{A B})^{*}=\boldsymbol{B}^{*} \boldsymbol{A}^{*},\left(\boldsymbol{A}^{*}\right)^{*}=|\boldsymbol{A}|^{n-2} \boldsymbol{A} .\\ 【注】 (\boldsymbol{A}+\boldsymbol{B})^{*} \neq \boldsymbol{A}^{*}+\boldsymbol{B}^{*} .

矩阵的秩

Am×n,B,(1)0r(A)min{m,n};(2)r(kA)=r(A)(k0);(3)r(AB)min{r(A),r(B)};(4)r(A+B)r(A)+r(B);(5)r(A)={n,r(A)=n,1,r(A)=n1,An.0,r(A)<n1,设 \boldsymbol{A} 是 m \times n 矩阵, \boldsymbol{B} 是满足有关矩阵运算要求的矩阵, 则\\ (1) 0 \leqslant r(\boldsymbol{A}) \leqslant \min \{m, n\} ;\\ (2) r(k \boldsymbol{A})=r(\boldsymbol{A})(k \neq 0) ;\\ (3) r(\boldsymbol{A B}) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\} ;\\ (4) r(\boldsymbol{A}+\boldsymbol{B}) \leqslant r(\boldsymbol{A})+r(\boldsymbol{B}) ;\\ (5) r\left(\boldsymbol{A}^{*}\right)=\left\{\begin{array}{ll}n, & r(\boldsymbol{A})=n, \\ 1, & r(\boldsymbol{A})=n-1,其中\boldsymbol{A}为n阶方阵. \\ 0, & r(\boldsymbol{A})<n-1,\end{array}\right.

施密特正交化

线α1,α2()β1=α1,β2=α2(α2,β1)(β1,β1)β1,β1,β2.β1,β2,η1=β1β1,η2=β2β2,η1,η2.线性无关向量组 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} 的标准正交化 (又称正交规范化)公式为\\ \begin{array}{l} \boldsymbol{\beta}_{1}=\boldsymbol{\alpha}_{1}, \\ \boldsymbol{\beta}_{2}=\boldsymbol{\alpha}_{2}-\frac{\left(\boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{1}\right)}{\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{1}\right)} \boldsymbol{\beta}_{1}, \end{array}\\ 得到的 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} 是正交向量组.\\ 将 \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} 单位化, 得\\ \boldsymbol{\eta}_{1}=\frac{\boldsymbol{\beta}_{1}}{\left\|\boldsymbol{\beta}_{1}\right\|}, \quad \boldsymbol{\eta}_{2}=\frac{\boldsymbol{\beta}_{2}}{\left\|\boldsymbol{\beta}_{2}\right\|},\\ 则 \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2} 是标准正交向量组.

向量空间

1.ξ1,ξ2,,ξnnRn线,αRnξ1,ξ2,,ξn线,α=a1ξ1+a2ξ2++anξn,ξ1,ξ2,,ξnRn,n,[a1,a2,,an]([a1,a2,,an]T)αξ1,ξ2,,ξn,α().2.η1,η2,,ηnξ1,ξ2,,ξnRn,[η1,η2,,ηn]=[ξ1,ξ2,,ξn][c11c12c1nc21c22c2ncn1cn2cnn]=[ξ1,ξ2,,ξn]C, ()()ξ1,ξ2,,ξnη1,η2,,ηn,Cξ1,ξ2,,ξnη1,η2,,ηn,Ciηiξ1,ξ2,,ξn,C.1. 基本概念\\ 若 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 是 n 维向量空间 \mathbf{R}^{n} 中的线性无关的有序向量组,\\ 则任一向量 \boldsymbol{\alpha} \in \mathbf{R}^{n} 均可由 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots , \boldsymbol{\xi}_{n} 线性表出,记表出式为\\ \boldsymbol{\alpha}=a_{1} \boldsymbol{\xi}_{1}+a_{2} \boldsymbol{\xi}_{2}+\cdots+a_{n} \boldsymbol{\xi}_{n},\\ 称有序向量组 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 是 \mathbf{R}^{n} 的一个基, 基向量的个数 n 称为向量空间的维数,\\ 而 \left[a_{1}, a_{2}, \cdots, a_{n}\right]\left(\left[a_{1}\right.\right. , \left.a_{2}, \cdots, a_{n}\right]^{\mathrm{T}} ) 称为向量 \boldsymbol{\alpha} 在基 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 下的坐标, 或称为 \boldsymbol{\alpha} 的坐标行 (列) 向量.\\ 2. 基变换、坐标变换\\ 若 \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n} 和 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 是 \mathbf{R}^{n} 中的两个基, 且有关系\\ \left[\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n}\right]=\left[\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n}\right]\left[\begin{array}{cccc} c_{11} & c_{12} & \cdots & c_{1 n} \\ c_{21} & c_{22} & \cdots & c_{2 n} \\ \vdots & \vdots & & \vdots \\ c_{n 1} & c_{n 2} & \cdots & c_{nn} \end{array}\right]=\left[\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n}\right] \boldsymbol{C}, \ (*) \\ 则 (*) 式称为由基 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 到基 \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n} 的基变换公式, 矩阵 \boldsymbol{C} 称为由基 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 到\\基 \boldsymbol{\eta}_{1} , \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n} 的过渡矩阵, \boldsymbol{C} 的第 i 列即是 \boldsymbol{\eta}_{i} 在基 \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \cdots, \boldsymbol{\xi}_{n} 下的坐标, 且过渡矩阵 \boldsymbol{C} 是可逆矩阵.

线性方程组解的性质

η1,η2,η线Ax=b,ξ线Ax=0,:(1)η1η2Ax=0;(2)kξ+ηAx=b.设 \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \boldsymbol{\eta} 是非齐次线性方程组 \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} 的解, \boldsymbol{\xi} 是对应齐次线性方程组 \boldsymbol{A} \boldsymbol{x}=\boldsymbol{0} 的解, 则: \\ (1) \boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2} 是 \boldsymbol{A} \boldsymbol{x}=\mathbf{0} 的解; (2) k \boldsymbol{\xi}+\boldsymbol{\eta} 是 \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} 的解.

特征值的性质

A=(aij)n×n,λi(i=1,2,,n)A,(1)i=1nλi=i=1naii=tr(A);(2)i=1nλi=A.设 \boldsymbol{A}=\left(a_{i j}\right)_{n \times n}, \lambda_{i}(i=1,2, \cdots, n) 是 \boldsymbol{A} 的特征值,则\\ (1) \sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}=\operatorname{tr}(\boldsymbol{A}) ;\\ (2) \prod_{i=1}^{n} \lambda_{i}=|\boldsymbol{A}| .

相似矩阵的性质

1.A,Bn,nP,使P1AP=B,AB,AB.2.(1)AB,:(1)r(A)=r(B);(2)A=B;(3)λEA=λEB;(4)A,B.(2)AB,AmBm,f(A)f(B)(f(x)).(3)AB,A,A1B1,f(A1)f(B1)(f(x)).(4)AB,ATBT. (5) 若 AB, 且 A 可逆, 则 AB1. 定义\\ 设 \boldsymbol{A}, \boldsymbol{B} 是两个 n 阶方阵, 若存在 n 阶可逆矩阵 \boldsymbol{P} , 使得 \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}=\boldsymbol{B} , 则称 \boldsymbol{A} 相似于 \boldsymbol{B} , 记成 \boldsymbol{A} \sim \boldsymbol{B} .\\ 2. 相似矩阵的性质\\ (1) 若 \boldsymbol{A} \sim \boldsymbol{B} , 则有: (1) r(\boldsymbol{A})=r(\boldsymbol{B}) ; (2) |\boldsymbol{A}|=|\boldsymbol{B}| ; (3) |\lambda \boldsymbol{E}-\boldsymbol{A}|=|\lambda \boldsymbol{E}-\boldsymbol{B}| ; (4) \boldsymbol{A}, \boldsymbol{B} 有相同的特征值.\\ (2) 若 \boldsymbol{A} \sim \boldsymbol{B} , 则 \boldsymbol{A}^{m} \sim \boldsymbol{B}^{m}, f(\boldsymbol{A}) \sim f(\boldsymbol{B} ) (其中 f(x) 是多项式) .\\ (3) 若 \boldsymbol{A} \sim \boldsymbol{B} , 且 \boldsymbol{A} 可逆, 则 \boldsymbol{A}^{-1} \sim \boldsymbol{B}^{-1}, f\left(\boldsymbol{A}^{-1}\right) \sim f\left(\boldsymbol{B}^{-1}\right) (其中 f(x) 是多项式).\\ (4) 若 \boldsymbol{A} \sim \boldsymbol{B} , 则 \boldsymbol{A}^{\mathrm{T}} \sim \boldsymbol{B}^{\mathrm{T}} .\\ \text { (5) 若 } \boldsymbol{A} \sim \boldsymbol{B} \text {, 且 } \boldsymbol{A} \text { 可逆, 则 } \boldsymbol{A}^{*} \sim \boldsymbol{B}^{*} \text {. }

其他

 实对称矩阵 A 的属于不同特征值的特征向量相互正交  上、下三角矩阵与对角矩阵的特征值就是对角线元素. \text { 实对称矩阵 } \boldsymbol{A} \text { 的属于不同特征值的特征向量相互正交 }\\ \text { 上、下三角矩阵与对角矩阵的特征值就是对角线元素. }\\

惯性定理

线,,p,q,p,q. (1) 若二次型的秩为 r, 则 r=p+q, 可逆线性变换不改变正、负惯性指数;  (2) 两个二次型(或实对称矩阵)合同的充要条件是有相同的正、负惯性指数,.无论选取什么样的可逆线性变换, 将二次型化成标准形或规范形,\\ 其正项个数 p , 负项个数 q 都是不 变的, p 称为正惯性指数, q 称为负惯性指数.\\ \text { (1) 若二次型的秩为 } r \text {, 则 } r=p+q \text {, 可逆线性变换不改变正、负惯性指数; }\\ \text { (2) 两个二次型(或实对称矩阵)合同的充要条件是有相同的正、负惯性指数,} \\ {或有相同的秩及正(或负)惯性指数. }\\

正定

1.nf(x1,x2,,xn)=xTAx.x=[x1,x2,,xn]T0,xTAx>0,f,A.2.nf=xTAxx0,xTAx>0()fp=nD,使A=DTDAEAλi>0(i=1,2,,n)A0.3.(1)aii>0(i=1,2,,n).(2)A>0.1. 定义\\ n 元二次型 f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A x} . 若对任意的 \boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{\mathrm{T}} \neq \mathbf{0} , 均有 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}>0 , \\ 则称 f 为正 定二次型, 称二次型的对应矩阵 \boldsymbol{A} 为正定矩阵.\\ 2. 二次型正定的充要条件\\ n 元二次型 f=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} 正定 \Leftrightarrow 对任意 \boldsymbol{x} \neq \boldsymbol{0} , 有 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}>0 (定义)\\ \Leftrightarrow f 的正惯性指数 p=n \\ \Leftrightarrow 存在可逆矩阵 \boldsymbol{D} , 使 \boldsymbol{A}=\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D} \\ \Leftrightarrow \boldsymbol{A} \simeq \boldsymbol{E} \\ \Leftrightarrow \boldsymbol{A} 的特征值 \lambda_{i}>0(i=1,2, \cdots, n) \\ \Leftrightarrow \boldsymbol{A} 的全部顺序主子式均大于 0 .\\ 3. 二次型正定的必要条件\\ (1) a_{i i}>0(i=1,2, \cdots, n) .\\ (2) |\boldsymbol{A}|>0 .

概率论与数理统计

A+B

P(A+B)=P(A)+P(B)P(AB)P(A+B)=P(A)+P(B)-P(A B)

全概率公式

P(B)=i=1nP(Ai)P(BAi)P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)

贝叶斯公式

P(AjB)=P(AjB)P(B)=P(Aj)P(BAj)i=1nP(Ai)P(BAi),j=1,2,,n.P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} B\right)}{P(B)}=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}, j=1,2, \cdots, n .

最值

max{X,Y},min{X,Y},:(1){max{X,Y}a}={Xa}{Ya};(2){max{X,Y}>a}={X>a}{Y>a};(3){min{X,Y}a}={Xa}{Ya};(4){min{X,Y}>a}={X>a}{Y>a};(5){max{X,Y}a}{min{X,Y}a};(6){min{X,Y}>a}{max{X,Y}>a}.当遇到与 \max \{X, Y\}, \min \{X, Y\} 有关的事件时, 下面一些关系式是经常要用到的:\\ (1) \{\max \{X, Y\} \leqslant a\}=\{X \leqslant a\} \cap\{Y \leqslant a\} ;\\ (2) \{\max \{X, Y\}>a\}=\{X>a\} \cup\{Y>a\} ;\\ (3) \{\min \{X, Y\} \leqslant a\}=\{X \leqslant a\} \cup\{Y \leqslant a\} ;\\ (4) \{\min \{X, Y\}>a\}=\{X>a\} \cap\{Y>a\} ;\\ (5) \{\max \{X, Y\} \leqslant a\} \subseteq\{\min \{X, Y\} \leqslant a\} ;\\ (6) \{\min \{X, Y\}>a\} \subseteq\{\max \{X, Y\}>a\} .

二项分布

XB(n,p){ a. n 次试验相互独立;  b. P(A)=p; c. 只有 A,Aˉ 两种结果. XA,P{X=k}=Cnkpk(1p)nk,k=0,1,2,,n. X \sim B(n, p)\left\{\begin{array}{l}\text { a. } n \text { 次试验相互独立; } \\ \text { b. } P(A)=p ; \\ \text { c. 只有 } A, \bar{A} \text { 两种结果. }\end{array}\right. \\ 记 X 为 A 发生的次数,则\\ P\{X=k\}=\mathrm{C}_{n}^{k} \cdot p^{k}(1-p)^{n-k}, k=0,1,2, \cdots, n .

几何分布

XG(p)(),X,P{X=k}=p(1p)k1,k=1,2,. X \sim G(p) 首中即停止 (等待型分布), 记 X 为试验次数, 则\\ P\{X=k\}=p \cdot(1-p)^{k-1}, k=1,2, \cdots .

超几何分布

NM,n,kP{X=k}=CMkCNMnkCNn,k 为整数, max{0,nN+M}kmin{n,M} N 件产品中有 M 件正品, 无放回取 n 次, 则取到 k 个正品的概率\\ P\{X=k\}=\frac{\mathrm{C}_{M}^{k} \mathrm{C}_{N-M}^{n-k}}{\mathrm{C}_{N}^{n}}, k \text { 为整数, } \max \{0, n-N+M\} \leqslant k \leqslant \min \{n, M\} \text {. }

泊松分布

,,,.P{X=k}=λkk!eλ(k=0,1,;λ>0),λ 表示强度 (EX=λ). XB(n,p),n,p,λ=np,,Cnkpk(1p)nkλkk!eλ.,n20,p0.05,,n100,np10,.某单位时间段, 某场合下, 源源不断的随机质点流的个数, 也常用于描述稀有事件的概率.\\ P\{X=k\}=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}(k=0,1, \cdots ; \lambda>0), \lambda \text { 表示强度 }(E X=\lambda) . \\ 泊松定理 \ 若 X \sim B(n, p) , 当 n 很大, p 很小, \lambda=n p 适中时, 二项分布可用泊松分布近似表示, 即\\ \mathrm{C}_{n}^{k} p^{k}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda} .\\ 一般地, 当 n \geqslant 20, p \leqslant 0.05 时, 用泊松近似公式逼近二项分布效果比较好, 特别当 n \geqslant 100, n p \leqslant 10 时,逼近效果更佳.

指数分布

Xf(x)={λeλx,x0,0, 其他 (λ>0),F(x)={1eλx,x0,0,x<0(λ>0),Xλ,XE(λ).:1P{Xt+sXt}=P{Xs}.2F(x)={1eλx,x0,0,x<0(λ>0)(,).3{ 几何分布  离散型等待分布  指数分布  连续型等待分布 .如果 X 的概率密度或分布函数分别为\\ f(x)=\left\{\begin{array}{ll} \lambda \mathrm{e}^{-\lambda x}, & x \geqslant 0, \\ 0, & \text { 其他 } \end{array}(\lambda>0), F(x)=\left\{\begin{array}{ll} 1-\mathrm{e}^{-\lambda x}, & x \geqslant 0, \\ 0, & x<0 \end{array}(\lambda>0),\right.\right.\\ 则称 X 服从参数为 \lambda 的指数分布, 记为 X \sim E(\lambda) .\\ 注意: 1^{\circ} P\{X \geqslant t+s \mid X \geqslant t\}=P\{X \geqslant s\} 无记忆性. \\ 2^{\circ} \mathrm{F}(x)=\left\{\begin{array}{ll}1-\mathrm{e}^{-\lambda x}, & x \geqslant 0, \\ 0, & x<0\end{array}(\lambda>0)(\right. 记, 易考).\\ 3^{\circ}\left\{\begin{array}{l}\text { 几何分布 } \Rightarrow \text { 离散型等待分布 } \\ \text { 指数分布 } \Rightarrow \text { 连续型等待分布 }\end{array} \Rightarrow\right. 无记忆性.

正态分布

Xf(x)=12πσe(xμ)22σ2,<x<+,<μ<+,σ>0,X(μ,σ2),XN(μ,σ2).:1μ=0,σ=1N(0,1),Xφ(x)=12πex22,Φ(x)=x12πet22 dt,XN(0,1).2XN(μ,σ2),XμσN(0,1)F(x)=P{Xx}=Φ(xμσ)P{aXb}=Φ(bμσ)Φ(aμσ)P{μσXμ+σ}=2Φ(1)1P{μkσXμ+kσ}=2Φ(k)1(k>0)3XN(0,1),Φ(x)=1Φ(x)P{Xa}=2Φ(a)1(a>0)P{X>a}=2[1Φ(a)](a>0)若 \quad X \sim f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<+\infty , 其中 -\infty<\mu<+\infty, \sigma>0 , \\ 则称 X 服从参数为 \left(\mu, \sigma^{2}\right) 的正态分布, 记为 X \sim N\left(\mu, \sigma^{2}\right) .\\ 注意: 1^{\circ} \mu=0, \sigma=1 时的正态分布 N(0,1) 为标准正态分布,\\ X \sim \varphi(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2}}, \Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{~d} t,\\ 则 X \sim N(0,1) .\\ 2^{\circ} 若 X \sim N\left(\mu, \sigma^{2}\right) , 则\\ \begin{array}{l} \frac{X-\mu}{\sigma} \sim N(0,1) \\ F(x)=P\{X \leqslant x\}=\Phi\left(\frac{x-\mu}{\sigma}\right) \\ P\{a \leqslant X \leqslant b\}=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\ P\{\mu-\sigma \leqslant X \leqslant \mu+\sigma\}=2 \Phi(1)-1 \\ P\{\mu-k \sigma \leqslant X \leqslant \mu+k \sigma\}=2 \Phi(k)-1(k>0) \end{array}\\ 3^{\circ} 若 X \sim N(0,1) , 则\\ \begin{array}{c} \Phi(-x)=1-\Phi(x) \\ P\{|X| \leqslant a\}=2 \Phi(a)-1(a>0) \\ P\{|X|>a\}=2[1-\Phi(a)](a>0) \end{array}

二维正态分布

(X,Y)f(x,y)=12πσ1σ21ρ2exp{12(1ρ2)[(xμ1σ1)22ρ(xμ1σ1)(yμ2σ2)+(yμ2σ2)2]},μ1R,μ2R,σ1>0,σ2>0,1<ρ<1,(X,Y)μ1,μ2,σ12,σ22,ρ,(X,Y)N(μ1,μ2;σ12,σ22;ρ).6.(1)(X1,X2)N(μ1,μ2;σ12,σ22;ρ),X1N(μ1,σ12),X2N(μ2,σ22).(2)X1N(μ1,σ12),X2N(μ2,σ22)X1,X2,(X1,X2)N(μ1,μ2;σ12,σ22;0).(3)(X1,X2)Nk1X1+k2X2N(k1,k20).(4)(X1,X2)N,Y1=a1X1+a2X2,Y2=b1X1+b2X2,a1a2b1b20(Y1,Y2)N.(5)(X1,X2)N,X1,X2X1,X2.5广.(6)(X,Y)N,fXY(xy)N,fYX(yx)N().如果 (X, Y) 的概率密度为 \\ f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\},\\ 其中 \mu_{1} \in \mathbf{R}, \mu_{2} \in \mathbf{R}, \sigma_{1}>0, \sigma_{2}>0,-1<\rho<1 , \\ 则称 (X, Y) 服从参数为 \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho 的二维正态分布, 记 为 (X, Y) \sim N\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; \rho\right) .\\ 【注】有下面 6 条重要结论.\\ (1) 若 \left(X_{1}, X_{2}\right) \sim N\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; \rho\right) , 则\\ X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right) .\\ (2) 若 X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right) 且 X_{1}, X_{2} 相互独立,则\\ \left(X_{1}, X_{2}\right) \sim N\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; 0\right) .\\ (3) \left(X_{1}, X_{2}\right) \sim N \Rightarrow k_{1} X_{1}+k_{2} X_{2} \sim N\left(k_{1}, k_{2}\right. 是不全为 0 的常数 ) .\\ (4) \left(X_{1}, X_{2}\right) \sim N, Y_{1}=a_{1} X_{1}+a_{2} X_{2}, Y_{2}=b_{1} X_{1}+b_{2} X_{2} , 且\\ \left|\begin{array}{ll} a_{1} & a_{2} \\ b_{1} & b_{2} \end{array}\right| \neq 0 \Rightarrow\left(Y_{1}, Y_{2}\right) \sim N .\\ (5) \left(X_{1}, X_{2}\right) \sim N , 则 X_{1}, X_{2} 相互独立 \Leftrightarrow X_{1}, X_{2} 不相关.\\ 以上 5 条可推广至有限个随机变量的情形.\\ (6) (X, Y) \sim N , 则 f_{X \mid Y}(x \mid y) \sim N, f_{Y \mid X}(y \mid x) \sim N (二维正态分布的条件分布仍是正态分布).

最值函数的分布

Xi(i=1,2,,n;n2),F(x),f(x),Y=min{X1,X2,,Xn},Z=max{X1,X2,,Xn},FY(y)=1[1F(y)]n,fY(y)=n[1F(y)]n1f(y)EY=+yfY(y)dyFZ(z)=[F(z)]n,fZ(z)=n[F(z)]n1f(z)EZ=+zfZ(z)dz若 X_{i}(i=1,2, \cdots, n ; n \geqslant 2) 独立同分布, 其分布函数为 F(x) , 概率密度为 f(x) , \\ 记 Y=\min \left\{X_{1}, X_{2}, \cdots\right. , \left.X_{n}\right\}, Z=\max \left\{X_{1}, X_{2}, \cdots, X_{n}\right\} , 则\\ \begin{array}{l} F_{Y}(y)=1-[1-F(y)]^{n}, f_{Y}(y)=n[1-F(y)]^{n-1} f(y) \Rightarrow E Y=\int_{-\infty}^{+\infty} y f_{Y}(y) \mathrm{d} y \\ F_{Z}(z)=[F(z)]^{n}, f_{Z}(z)=n[F(z)]^{n-1} f(z) \Rightarrow E Z=\int_{-\infty}^{+\infty} z f_{Z}(z) \mathrm{d} z \end{array}

方差

DX=E(X2)(EX)2D(X±Y)=DX+DY±2Cov(X,Y)D X=E\left(X^{2}\right)-(E X)^{2}\\ D(X \pm Y)=D X+D Y \pm 2 \operatorname{Cov}(X, Y)\\

协方差 相关系数

Cov(X,Y)=E[(XEX)(YEY)]Cov(X,Y)=E(XYXEYEXY+EXEY)=E(XY)EXEYEXEY+EXEY=E(XY)EXEY.(2)ρXY.(,线)ρXY=Cov(X,Y)DXDY{=0X,Y 不相关, 0X,Y 相关. (1,)(3).(1)Cov(X,Y)=Cov(Y,X).(2)Cov(aX,bY)=abCov(X,Y).(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).(4)ρXY1.(5)ρXY=1P{Y=aX+b}=1(a>0).ρXY=1P{Y=aX+b}=1(a<0).,Y=aX+b,a>0ρXY=1.Y=aX+b,a<0ρXY=1.(6).ρXY=0Cov(X,Y)=0E(XY)=EXEYD(X+Y)=DX+DYD(XY)=DX+DY(7)X,YρXY=0.(8)(X,Y)(μ1,μ2;σ12,σ22;ρXY),X,YX,Y(ρXY=0).\operatorname{Cov}(X, Y)=E[(X-E X)(Y-E Y)]\\ \begin{aligned} \operatorname{Cov}(X, Y) &=E(X Y-X \cdot E Y-E X \cdot Y+E X \cdot E Y) \\ &=E(X Y)-E X \cdot E Y-E X \cdot E Y+E X \cdot E Y \\ &=E(X Y)-E X E Y . \end{aligned}\\ (2) \rho_{X Y} 定义. (相关系数, 表线性相依程度)\\ \rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D X} \sqrt{D Y}}\left\{\begin{array}{l}=0 \Leftrightarrow X, Y \text { 不相关, } \\ \neq 0 \Leftrightarrow X, Y \text { 相关. }\end{array}\right. \\ (量纲为 1 , 无单位)\\ (3)性质.\\ (1) \operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X) .\\ (2) \operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y) .\\ (3) \operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right) .\\ (4) \left|\rho_{X Y}\right| \leqslant 1 .\\ (5) \rho_{X Y}=1 \Leftrightarrow P\{Y=a X+b\}=1(a>0) .\\ \rho_{X Y}=-1 \Leftrightarrow P\{Y=a X+b\}=1(a<0) .\\ 考试时, Y=a X+b, a>0 \Rightarrow \rho_{X Y}=1 .\\ Y=a X+b, a<0 \Rightarrow \rho_{X Y}=-1 .\\ (6) 五个充要条件.\\ \begin{aligned} \rho_{X Y}=0 & \Leftrightarrow \operatorname{Cov}(X, Y)=0 \Leftrightarrow E(X Y)=E X \cdot E Y \\ & \Leftrightarrow D(X+Y)=D X+D Y \Leftrightarrow D(X-Y)=D X+D Y \end{aligned}\\ (7) X, Y 独立 \Rightarrow \rho_{X Y}=0 .\\ (8) 若 (X, Y) \sim\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; \rho_{X Y}\right) , 则 X, Y 独立 \Leftrightarrow X, Y 不相关 \left(\rho_{X Y}=0\right) .

常用分布的EX,DX

(1)01,EX=p,DX=pp2=(1p)p.(2)XB(n,p),EX=np,DX=np(1p).(3)XP(λ),EX=λ,DX=λ.(4)XG(p),EX=1p,DX=1pp2.(5)XU(a,b),EX=a+b2,DX=(ba)212.(6)XE(λ),EX=1λ,DX=1λ2.(7)XN(μ,σ2),EX=μ,DX=σ2.(8)Xχ2(n),EX=n,DX=2n.(1) 0-1 分布, E X=p, D X=p-p^{2}=(1-p) p .\\ (2) X \sim B(n, p), E X=n p, D X=n p(1-p) .\\ (3) X \sim P(\lambda), E X=\lambda, D X=\lambda .\\ (4) X \sim G(p), E X=\frac{1}{p}, D X=\frac{1-p}{p^{2}} .\\ (5) X \sim U(a, b), E X=\frac{a+b}{2}, D X=\frac{(b-a)^{2}}{12} .\\ (6) X \sim E(\lambda), E X=\frac{1}{\lambda}, D X=\frac{1}{\lambda^{2}} .\\ (7) X \sim N\left(\mu, \sigma^{2}\right), E X=\mu, D X=\sigma^{2} .\\ (8) X \sim \chi^{2}(n), E X=n, D X=2 n .

正态总体下的常用结论

X1,X2,,XnN(μ,σ2),Xˉ,S2, (1) XˉN(μ,σ2n), 即 Xˉμσn=n(Xˉμ)σN(0,1)(2)1σ2i=1n(Xiμ)2χ2(n);(3)(n1)S2σ2=i=1n(XiXˉσ)2χ2(n1)(μ,(2)Xˉμ);(4)XˉS2,n(Xˉμ)St(n1)(σ,(1)Sσ).n(Xˉμ)2S2F(1,n1).设 X_{1}, X_{2}, \cdots, X_{n} 是取自正态总体 N\left(\mu, \sigma^{2}\right) 的一个样本, \bar{X}, S^{2} 分别是样本均值和样本 方差, 则\\ \text { (1) } \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text {, 即 } \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1) \text {; }\\ (2) \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \sim \chi^{2}(n) ;\\ (3) \frac{(n-1) S^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2} \sim \chi^{2}(n-1)(\mu 末知, 在“(2)” 中用 \bar{X} 替代 \mu) ;\\ (4) \bar{X} 与 S^{2} 相互独立, \frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1) ( \sigma 末知, 在 “(1)” 中用 S 替代 \sigma ). 进一步有 \frac{n(\bar{X}-\mu)^{2}}{S^{2}} \sim F(1, n-1).

施工中…